
LLNL-PRES-688821
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The	RAJA	Encapsula0on	Model	for	
Architecture	Portability	
DOE	Centers	of	Excellence	Performance	Portability	
Mee7ng,	Glendale	AZ	

Rich	Hornung,	LLNL	
Jeff	Keasler,	LLNL	

April 19, 2016

LLNL-PRES--688821
2	

Overarching	RAJA	goal:	enable	portability	with	small	
disrup+on	to	applica0on	programming	style	

Ideal: Developers add parallelism to code using RAJA encapsulation layer –
preserve development dynamics and advantages of MPI heritage

Balance	Performance:	

§  Augment	compiler’s	ability	to	op7mize	C++	code	
—  Allow	work-arounds	when	performance	is	not	what’s	expected	

§  Simplify	expression	of	various	forms	of	fine-grained	(on-node)	parallelism	
	
And	Produc0vity:	

§  Single-source	kernels	
— Do	not	bind	an	applica7on	to	a	par7cular	PM	technology	
—  Best	choice	for	a	given	plaVorm	or	algorithm	may	not	be	clear	

§  Clear	separa7on	of	responsibili7es	
—  RAJA:	 	Encapsulate	hardware	and	PM	details	and	execute	loops	
—  App: 	Select	itera7on	paWerns	and	execu7on	policies	with	RAJA	API	

LLNL-PRES--688821
3	

§  Loop	itera7on	and	loop	body	are	decoupled	(body	mostly	unchanged,	oZen	untouched)	

§  A	loop	itera7on	is	a	“task”	–	reorder,	schedule,	aggregate,	manage	dependencies,	etc.	

§  Explore	implementa7on	alterna7ves	(tuning)	without	disrup7ng	applica7on	source	code	

RAJA	is	a	low-risk	way	to	realize	latent	fine-grain	
parallelism	in	exis0ng	applica0ons		

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX;
…
for (int i = begin; i < end; ++i) {
 y[i] += a * x[i] ;
 tsum += y[i] ;
 if (y[i] < tmin) tmin = y[i];
}

C-style for-loop RAJA-style loop
double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);
…
RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
 y[i] += a * x[i] ;
 tsum += y[i];
 tmin.min(y[i]);
});

—  Reduc7on	types	(programming	model	portability)	
—  IndexSets	(itera7on	space	par77on,	ordering,	dependencies,	data	placement,	etc.)	

§  RAJA	encapsula7on	features	
—  Traversals	&	execu7on	policies	(loop	scheduling,	execu7on,	PM	backends)	

LLNL-PRES--688821
4	

§  Design	based	on	loop	/	mesh	traversal	paWerns	in	LLNL	ASC	codes	
—  A	loop	is	the	main	conceptual	abstrac0on	in	RAJA	
—  A	typical	LLNL	mul7-physics	code	has	O(10K)	loops,	but	O(10)	loop	pa#erns	
—  App	teams	typically	wrap	RAJA	in	a	“mini-DSL”	that	matches	their	style	

§  RAJA	can	be	used	selec0vely	and	adopted	incrementally	
— Mapping	loops	to	RAJA	“execu7on	policies”	is	key	to	performance	
—  Important	considera7ons:	data	mo7on,	compute	intensity,	branch	intensity,	

available	parallelism,	etc.	

	

RAJA	enables	systema0c	architecture	portability	
and	tuning	for	large	produc0on	codes	

1) Achieve basic portability

•  Make code thread-
safe where needed

•  Convert loops to
RAJA-style

Profile 2) Tune exec policies

•  Identify loop classes
•  Map classes to
architecture features
using RAJA traversal
templates and
execution policies

Profile 3) Explore tuning options

•  Change iteration
pattern (IndexSets)?

•  Redesign algorithm
or data layout?

•  Code-specific RAJA
constructs?

§  Typical	RAJA	integra7on	process:	

LLNL-PRES--688821
5	

RAJA	core	abstrac0ons	can	combined	with	
applica0on-specific	implementa0ons	

5

// Kernel 1
for (int i=begin; i<end; ++i) {
 Loop body 1 (stride-1)
}
 …
// Kernel 2
for (int i=0; i<len; ++i) {
 Loop body 2 (indirection)
}
…
// Kernel 3
…
// Kernel 4
…

Original app code
// Kernel 1 : “stream” à low FLOP/bandwidth
RAJA::forall<stream> (begin, end, [=] (int i) {
 Loop body 1
});

// …
// Kernel 2 : “work” à high FLOP/bandwidth
RAJA::forall<work> (iset, [=] (int i) {
 Loop body 2 (iset = index “ranges” & “lists”)
});

“RAJA-fied” app code

Para-
meterized

RAJA
loops

Execution policies (app defined)
Arch A : stream = seq, work = omp
Arch B : stream = omp, work = gpu

RAJA supports relatively simple parameterization of most loops.
Others may need customization or more severe disruption for desired performance.

// Kernel 3 : RAJA IndexSet w/ custom traversal
app::forall<app_policy> (iset, [=] (…) {
 Loop body 3
});

Customized RAJA

Kernel 4 - Arch A

Kernel 4 - Arch B

Architecture-
tailored

implementations

LLNL-PRES--688821
6	

§  Example	code:	accumulate	element	
volumes	to	mesh	nodes		

§  Itera7ons	are	colored	into	sets	of	
independent	work	(IndexSet	Segments)	
—  Iterate	over	segments	sequen7ally	
—  Execute	each	segment	in	parallel	

§  Without	reordering,	requires	either:	
—  Conten7on-heavy	fine-grained	sync	ops	

(atomics	/	cri7cal	sec7ons)		
—  Temporary	arrays	for	accumula7ng	sums	

§  RAJA	reordering	allows	use	of	coarse-
grained	synchroniza7on	
—  Less	memory	conten7on	
—  Code	remains	as	domain	expert	wrote	it	

RAJA	IndexSets	simplify	thread-safe	refactoring	
of	code	with	data	races		
forall< colorset >(elemSet, [=] (int elem) {
 // Get element node ids
 int p0 = elemToNodeMap[elem][0];  
 int p1 = elemToNodeMap[elem][1];  
 int p2 = elemToNodeMap[elem][2];  
 int p3 = elemToNodeMap[elem][3];  

 // Accumulate volume to nodes
 double volFrac = elemVol[elem]/4.0 ;  
 nodeVol[p0] += volFrac ;  
 nodeVol[p1] += volFrac ;  
 nodeVol[p2] += volFrac ;  
 nodeVol[p3] += volFrac ;  
}) ;

LLNL-PRES--688821
7	

 #pragma omp parallel for schedule(static,1)
 for (int i = 0; i < is->num_seg; ++i) {
 IndexSetSegInfo* seg_info = iset.getSegmentInfo(i);
 DepGraphNode* task = seg_info->getDepGraphNode();
 while (task->semaphoreValue() != 0) {
 sched_yield() ;
 }

 execute<SEG_EXEC_POLICY>(seg_info, loop_body);

 if (task->semaphoreReloadVaue() != 0) {
 task->semaphoreValue() = task->semaphoreReloadValue();
 }

 if (task->numDepTasks() != 0) {
 for (int j = 0; j < task->numumDepTasks; ++j) {
 int seg = task->depTaskNum(j);
 DepGraphNode* dep = iset.getSegmentInfo(seg)->getDepGraphNode();
 __sync_fetch_and_sub(&(dep->semaphoreValue()), 1);

 }
 }
 }	

Segment scheduling control logic like this is hidden in a
RAJA traversal template.

Execute Segment

Wait for
dependencies to be

satisfied

Reset dependency
information

LLNL-PRES--688821
8	

RAJA	version	of	LULESH	v1.0	hydro	proxy	app	is	
an	interes0ng	case	study	

Base OpenMP
implementation is
memory intensive

RAJA OpenMP uses
coarse-grained
synchronization

Add pools for temp
arrays. CPU-GPU

switch in header file.

LLNL-PRES--688821
9	

Compiled with nvcc 7.5 using compute_37

LLNL-PRES--688821
10	

§  Abstrac7ons	to	automa7cally	move	data	between	DRAM	and	HBM	
or	device	memory	–	less	code	“cluWer”	than	OpenMP	4	or	CUDA:	

§  forallN	extensions	for	nested	loops:	
—  Supports	loop	interchange	and	data	layout	changes	
—  Provides	loop	index	types	to	ensure	code	is	correct	
	

ManagedArray
objects know

what
data to copy

ResourceManager
object knows
whether

to copy data

RAJA provides
context to know

where
to copy data

LLNL developers are assessing these concepts in production applications today.

David Poliakoff
talk tomorrow

Adam Kunen
talk tomorrow

LLNL-PRES--688821
11	

§  CPU-GPU	portability	achieved	with	exis7ng	PMs	and	standard	C++11	
—  OZen	does	not	require	much	code	restructuring	(incl.	reduc7ons)	or	mul7ple	versions	

§  RAJA	can	help	make	tuning	more	systema7c	
—  Focus	on	loop	paWerns,	not	individual	loops	

§  IndexSets	provide	a	lot	of	flexibility	
—  Code	specializa7ons	generated	(and	op7mized)	at	compile-7me.	Execu7on	paths	through	

specializa7ons	selected	at	run7me.	
—  Dependencies	between	itera7on	subsets	(Segments)	can	be	defined	to	ensure	correctness	

§  Mul7ple	LLNL	projects	contribute	to	RAJA:	Ares,	ALE3D,	Ardra,	AAPS,	etc.		
—  See	David	Beckingsale	policy	tuning	talk	tomorrow	

§  Three	LLNL	produc7on	apps	are	integra7ng	RAJA	to	prepare	for	Trinity	and	Sierra	:		
Ares,	ALE3D,	Ardra	

§  Other	codes	are	exploring	RAJA	:	NIF	VBL,	hypre,	VisIt,	hydra,	MARBL	
—  See	MaW	Mar7neau	proxy-app	talk	tomorrow	

RAJA	enables	a	single	source	code	base	to	run	
with	mul0ple	forms	of	parallelism		

An open-source RAJA release with example codes is imminent and will be available at
http://github.com/LLNL/RAJA -- collaborators welcome!

LLNL-PRES--688821
12	

SoOware	engineering	alone	is	not	enough	–	we	
need	to	work	closely	with	vendors	too	
§  Compiler	vendors	&	PM	developers	have	been	improving	support	for	C++	based	
encapsula7on		
—  IBM,	NVIDIA,	Intel,	GNU,	AMD	(Sierra	CoE,	DesignForward,	FastForward,	van	trips…)	
—  OpenMP	4.0	à	OpenMP	4.5	&	beyond	(See	Arpith	Jacob	talk	next)	

§  Tool	support	for	C++	templates	:	HPCToolkit,	Intel		

§  We (DOE HPC community) must
tell vendors what we need

§  Good solutions involve
negotiations (our needs, vendor
priorities, language standards,
vendor extensions, etc.)

Evaluate
vendor

solutions

Try things
and identify

issues
Build test

cases

Work with
vendors on
solutions

Co-design

A relatively small investment in compilers and runtimes (and vigilance) – compared to
HW costs – can have a huge, positive, lasting impact on our codes. Issues we identify

and work to resolve also benefit the broader HPC community.

